<table>
<thead>
<tr>
<th>Volumen 31</th>
<th>Julio - Diciembre 2003</th>
<th>Número 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>CIENCIA AGRARIA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Influencia del almacenamiento en atmósfera controlada sobre el contenido de azúcares totales y reductores de papa cv. Ranger Russet. Loyola, N., Thornton, R. E., Hiller, L. K., y Powers J.</td>
<td>01</td>
<td></td>
</tr>
<tr>
<td>Efecto de la reciazión sobre malezas de tomate (Lycopersicon esculentum Mill.) en el Alto Valle Río Negro y Neuquen. Adriana Buitramante, Graciela Raybet, Patricia Bruck, Aníbal Suarez y Alberto Escavía.</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>Vegetación proteina litoral y dinámica vegetacional antropogénica en Valdivia, Chile. Carlos Ramírez G., Xavier Amigo V. y Cristina San Martín.</td>
<td>24</td>
<td></td>
</tr>
<tr>
<td>Rendimiento de harina y aptitud panadera de seis cultivares de trigo de primavera sembrado en tres ambientes. Felicitas Hesla, Mario Mellado, Rosamaria Wickens, Marisol Berti y Samuel Jofré.</td>
<td>38</td>
<td></td>
</tr>
<tr>
<td>Efecto de niveles y frecuencias de riego por aspersión en papa (Solanum tuberosum L.). Jaime Solano S., Leovigildo Medina M. y Juan Nissen M.</td>
<td>47</td>
<td></td>
</tr>
<tr>
<td>Factores que influyen sobre la germinación de Ipomoea Nil (L.) Roth. María I. Sobrero, María N. Fioretti, Salvador Chalín, Olga B. Avila, y María del C. Ochoa.</td>
<td>60</td>
<td></td>
</tr>
<tr>
<td>NOTAS TECNICAS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Efecto de incorporar la raza Jersey a través de cruzamientos sobre producción y composición de leche. Román Atunique G., César Burgos P. y Humberto González V.</td>
<td>69</td>
<td></td>
</tr>
<tr>
<td>Digestibilidad de avena entera y laminada al vapor en yeguas. Rubén G. Poffo, Carla Remeny K. y Arturo Escobar V.</td>
<td>75</td>
<td></td>
</tr>
</tbody>
</table>
VEGETACIONAL PRATENSE LITORAL Y DINAMICA
VEGETACIONAL ANTRÓPOGENICA EN VALDIVIA, CHILE

Carlos Ramirez G.,1 Javier Amigo V., y Cristina San Martin1
1Universidad Austral de Chile, Facultad de Ciencias, Instituto de Botánica, Casilla 567, Valdivia, Chile.
2Universidad de Santiago de Chile, Facultad de Farmacia, Laboratorio de Botánica, F-15700 Santiago de Compostela, España.

ABSTRACT
Coastal prairie vegetation and anthropogenic vegetational dynamics in Valdivia, Chile.

Key words: Vegetation, Pasturages, Anthropogenic dynamic, Statistical multivariate analysis, Phytosociology, Chile.

The small southern coastal Chillean plains were originally covered with Olivillo forest (Lapageria-Arctostaphyliumn panici) in the elevated sites and Tomé-Plúa forest (Ilexphora-Arctostaphyliumn exscapa) in the depressions. Furthermore, at the edge of the plains and in the cliff areas Punanga marina tall shrubs (Griselinia-Exacelamnium ruprste) were growing. This original vegetation has been replaced by anthropogenic prairies. Using phytosociological methods, 53 vegetation relevés were lifted in the secondary anthropogenic prairie, vegetation of the Curintano (Valdivia, Chile) coastal plains, and differentiated according to the species present in each. A total of 54 plant species were identified, of which 52 are native and 2 are introduced. While the native species are not dominant, it was noted that a large number of them are present in the secondary anthropogenic vegetation. In the biological spectrum, the perennial weeds that dominate are indicators of anthropogenic influences and the annual weeds are those that indicate soil drought. The most important species present were: Agrostis capillaris, Antennaria nivalis, Holcus lanatus, Leonardos sylvatica and Vicia bromoides, of which only A. urvilleana is native. In addition to these, Rubus constrictus,

PALABRAS CLAVE: Vegetación, Pasturales, Dinámica antropogénica, Análisis estadístico multivariado, Fitosociología, Chile.

Las pequeñas planicies costeras del litoral valdviense estaban originalmente cubiertas de bosques de Olivillo (Lapageria-Arctostaphyliumn panici) en las partes altas y de Tomé-Plúa (Ilexphora-Arctostaphyliumn exscapa) en las depresiones. Además, en el borde de la planicie y en las acostas prosperaban un auténtico bosque de Punanga marina (Griselinia-Exacelamnium ruprste). Esta vegetación nativa original ha sido reemplazada por pastizales antropogénicos. Se levantaron 53 inventarios de vegetación, con la metodología fitosociológica, en las comunidades secundarias vegetacionales prácticas de la planicie litoral de Curintano (Valdivia, Chile), los cuales se ordenaron en una tabla utilizando especies diferenciadas. En total se determinaron, 54 especies vegetales de las cuales, 52 son nativas y 2 son introducidas. Aunque las especies nativas no son dominantes, llama la atención el alto número de éstas en una vegetación secundaria antropogénica. En el espectro biológico dominan hierbas perennes indicadoras de intervención y hierbas anuales que indican suelo seco. Las especies más importantes son: Agrostis capillaris, Antennaria nivalis, Holcus lanatus, Leonardos sylvatica y Vicia bromoides, de éstas, sólo la segunda es autóctona. Además de estas especies, también sirvieron como diferenciadoras para ordenar la tabla Rubus constrictus, lanas umbilicarias, Hedysarum salzmam, Juncus procumbens y Eringium paniculatum. Con ellas se

Recepción de originales: 26de febrero de 2000
Juncus immixtus, Holcus saltansianii, Juncus procerus y Eryngium paniculatum were also present as different species. The following plant associations were determined: Junceno-Agrostisemum capillaris (Céspita-Catillo prairie), Trifolio-Vulpino bromoalpinum (Céspita prairie), Junceno-Agrostisemum capillaris (Junquillito duro prairie), Juncetum procerae (Junquillito wet prairie), Cenelles-Antoxanthemum uriculatum (Paja rata core prairie) and Eryngiop-paniculatum (Cardencillo prairie). The first is formed when the Olliveye forest is cut and with the introduction of cattle. These areas can degrade to the second upon grazing, with shade and finally, to a third (Junquillito duro prairie), due to soil compaction. The Junquillito prairie is formed upon cutting the Tetlo-Pita forest followed by grazing and these areas can degrade to a Paja rata core prairie when rotation crops with esparto cultivars. The Cardencillo prairie is formed in replacement of the Patagonia marina scrub. The multivariate analysis confirmed the results of the traditional phytosociological method and established that the temperature and the soil humidity are factors that differentiate the plant associations. It is concluded that the anthropogenic activity changes the floristic composition of the prairie, increasing the diversity of the primitive vegetation.

INTRODUCCION

La dinámica de degradación de la vegetación boscosa en la región valdiviana de Chile termina con la instalación de praderas permanentes que son ejes-primarios xerométricos (Montalvo, 1975), con distinta composición florística, según la naturaleza del suelo y la vegetación boscosa original y de acuerdo al tipo de manejo silvagropecuario histórico que ha estado cuestionado el lugar (Ramírez et al., 1994). Con el tiempo estas praderas también se degradan y entonces ni en invierno ni en verano son invadidos por otras especies (Unicóctenas) tales como Rubus constitutus (Zacazamora) y Ulex europaeus (Estribillo) que forman materiales secundarios (Ramírez et al., 1988). Se han descrito varias series de degradación de este tipo, principalmente para los ecos tróficos de la depresión intermedia, pero no se desconocen aquellas que se originan en la región litoral (Ramírez et al., 1995).

El presente trabajo trata de relacionar las asociaciones vegetales primitivas en la dinámica de la vegetación boscosa primitiva en minera antigua de la región valdiviana repitiendo que a cada asociación boscosa deberán corresponder una determinada comunidad secundaria de reemplazo.

MATERIAL Y MÉTODOS

Área de Estudio: El territorio estudiado se encuentra en el litoral valdiviano, a la costa sur de la Isla de Chiloé. Lugar de estudio localmente se formaron
La vegetación original de la planicie corresponde mayoritariamente a bosque de Olivillo (Lapageria-Androsaceconcoman puncauti, Oberdörfer, 1960), interrumpido a orillas de los cursos de agua por bosques de Temu-Piura (Biphotanopsis-Myrceugenia esucculis, Tomaselli, 1941) con una distribución anual (Ramírez et al., 1996). Todo el borde y el resto del sitio de la planicie estaba cubierto por matorral de Patagonia marina (Gnetesillo-Eucalyptus rubesc, Ramírez 1982). Todas estas plantas fueron alteradas por la acción humana que habilitó la planicie para agricultura y ganadería (Ramírez et al., 1992).

Métodos

Se trabajó con 33 centros de vegetación levantadas con metodología fitosociológica en parcelas florística, taxonómica y ecológicamente homogéneas de 25 m² (Dierschke, 1994). En cada parcela se confeccionó primero una lista completa de las especies vegetales presentes y luego se estimó visualmente la abundancia de los individuos de cada una, mediante el porcentaje de cobertura de la parcela (Mueller- Domscheit y Ellenberg, 1974). Valores bajo 1% se representan como +++ y entre el
Vegetación primaria fluvial...Carlos Ramirez G...Javier Almej...y Celis H. San Martin.

27

primeros cuando habían varios individuos y, el segundo, cuando había un solo individuo de la especie en cuestión (Knapp, 1984).

Con los 33 inventarios se construyó una tabla fitosociológica, de cuya primera columna se tomaron las especies para analizar la flora. Esta flora fue analizada en su origen fitogeográfico y en su especiero biológico. La nomenclatura y el origen fitogeográfico fueron tomados de Marticorena y Quezada (1983) y de Matthei (1985). Las formas de vida se determinaron usando la clave de Ellenberg y Mueller-Dombois (1960).

La tabla inicial fue analizada verticalmente para determinar el número de especies por cénito y horizontalmente para determinar un valor de importancia de cada especie, siguiendo las instrucciones de Wikram and Shanholzer (1978). Luego se ordenó en forma trascional (Ramírez y Wenkermeier, 1976), usando especies diferenciales (Kreeb, 1983), para determinar las asociaciones vegetales representadas en ella. La nomenclatura fitosociológica corresponde a lo del Código Fitosociológico Internacional (Charpin et al., 1986) y laco y Arco-Aguilar, 1988.

En los puntos más representativos de cada asociación se extrajo una muestra de suelo (basta 20 cm de profundidad). Los análisis físico- químicos (pH, materia orgánica, N mineral, P disponible, K, Na, Ca, Mg y Al intercambiable) fueron realizados en el laboratorio del Instituto de Química e Ingeniería Agraria de la Universidad Austral de Chile, en Valdivia.

Posteriormente, la tabla fitosociológica fue transformada en una matriz de datos, con 35 casos y 84 variables. Para confeccionar esta matriz los signos + y - se echaron a la unidad. En esa matriz se calculó el coeficiente de correlación de Pearson (Szá, 1980) el cual sirvió para realizar un análisis de conglomerados, usando el método del saró mínimo para construir el dendrograma y observar la clasificación de los inventarios. Esta misma matriz fue sometida a un análisis de componentes principales (Lublig y Reynolds, 1988) para ordenar especies e inventarios fitosociológicos, según gradientes ambientales de acuerdo con Ramírez et al. (2000).

RESULTADOS Y DISCUSIÓN

La tabla fitosociológica

La tabla fitosociológica formada por los 33 inventarios se presentaron 84 especies. En ella existían 2772 sitios posibles, de los cuales sólo se presentaron 601, lo que equivale a solo un 26.68% de las posibilidades. Este resultado corresponde a una vegetación boscosa heterogénea. El inventario Nº 10 presenta el menor número de especies (11 sp) y el Nº 16, el mayor, con 22 especies. El promedio de especies por inventario fue de 18,18 especies ± 2,10 con un coeficiente de variación de un 16%, lo que coincide con el rasgo de que todos fueron levantados en comunidades pradizas, en general, con gran cantidad de matorrales (Elytrigia australis, Cyperus erectus, Hypochaeris radicata, etc.) (Ramírez et al., 1998).

La flor y el espectro biológico

Como se puede observar en la Cuadro 1, la mayor parte de la cobertura de la flora corresponde a

<table>
<thead>
<tr>
<th>Grupo</th>
<th>Especies</th>
<th>Cobertura</th>
</tr>
</thead>
<tbody>
<tr>
<td>Muros</td>
<td>1 (1,19%)</td>
<td>1 (0,02%)</td>
</tr>
<tr>
<td>Predomínios</td>
<td>3 (3,57%)</td>
<td>4 (0,10%)</td>
</tr>
<tr>
<td>Dicotiledóneas</td>
<td>53 (63,09%)</td>
<td>1183 (29,72%)</td>
</tr>
<tr>
<td>Monocotiledóneas</td>
<td>27 (31,34%)</td>
<td>2792 (70,15%)</td>
</tr>
<tr>
<td>Total</td>
<td>84 (100%)</td>
<td>4990 (100%)</td>
</tr>
</tbody>
</table>
Monocotiledóneas como cabe esperar en las praderas de una zona del mundo de clima templado y húmedo como es la región valdésima (Ramírez et al., 1993); sin embargo, la diversidad de Dicotiledóneas es hace mayor. Además, se destaca Equisetum bogotense, Blechnum chilense, B. Microphyllum, Pteridófitos con una amplia distribución, y una especie de Brácteis, Erodium arbóscaules.

En el espectro biológico dominan los hemícrptófitos (hierbas perennes) con 45 especies, seguidos por los terófitos (hierbas anuales) con 20 especies. Los fanerófitos, principalmente arbustivos, que representan restos del bosque original, presentaron 10 especies. Caméflos (plantas leñosas de bajo porte) y criptófitos (hierbas perennes con bulbos y rizomas) presentaron 4 especies cada uno (Cuadro 2). Al considerar la cobertura se hace patente la gran dominancia de los hemícrptófitos que ahora alcanza a un 84%. También son importantes los terófitos que en todo caso sólo llegan al 11,8% (Figura 2). La presencia de plantas anuales en esta región tan húmeda se explica por la sequía edáfica que origina el pisoteo del ganado al compactar el suelo (Ellies et al., 1994).

La flora y su caracterización fitogeográfica
De las 84 especies vegetales presentes en la tabla fitosociológica, 52 son autoctonas y 32 introducidas, lo que corresponde a 61,9% y

Cuadro 2. Especie biológica de la flora.
Table 2. Biological spectrum of the flora.

<table>
<thead>
<tr>
<th>Forma de vida</th>
<th>Especies</th>
<th>Cobertura</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fanerófitos</td>
<td>10 (11,90%)</td>
<td>76 (1,98%)</td>
</tr>
<tr>
<td>Caméflos</td>
<td>4 (4,76%)</td>
<td>29 (0,72%)</td>
</tr>
<tr>
<td>Hemicrptófitos</td>
<td>45 (53,57%)</td>
<td>3557 (84,35%)</td>
</tr>
<tr>
<td>Criptófitos</td>
<td>4 (4,76%)</td>
<td>44 (1,10%)</td>
</tr>
<tr>
<td>Terófitos</td>
<td>20 (23,80%)</td>
<td>471 (11,83%)</td>
</tr>
<tr>
<td>Total</td>
<td>84 (100%)</td>
<td>3980 (100%)</td>
</tr>
</tbody>
</table>

Figura 2. Espectro biológico de la flora expresado en número de especies (arriba) y en cobertura (abajo).
Figure 2. Biological spectrum of the flora expressed as number of species (above) and percentage of cover (below).
Cuadro 3. Origen fitoegeográfico de la flora.

<table>
<thead>
<tr>
<th>Origen</th>
<th>Véndices</th>
<th>Cobertura</th>
</tr>
</thead>
<tbody>
<tr>
<td>Naturales</td>
<td>52 (41,90%)</td>
<td>1806 (52%)</td>
</tr>
<tr>
<td>Introducidos</td>
<td>32 (31,10%)</td>
<td>2074 (48%)</td>
</tr>
<tr>
<td>Total</td>
<td>84 (100%)</td>
<td>3880 (100%)</td>
</tr>
</tbody>
</table>

38,1%, respectivamente (Cuadro 3). Al considerar la abundancia (cobertura) de los individuos, esta proporción se estrecha, descartando la nativa al 52% y las introducidas suben a 48%. Este alto porcentaje de especies autóctonas indica que en la vegetación original del lugar existían especies capaces de formar praderas que seguramente crecían en pequeños puntales, en el maternostero y en las dunas (San Martín et al., 1992).

Por el contrario, en las praderas del interior el porcentaje de especies nativas es siempre muy reducido (San Martín et al., 1998), posiblemente debido a que han sido más pastoreadas. Son especies autóctonas otras, Suaeda prolixa, Anthoxanthum uraliculatum, Chenopodium ramentosa, son de origen cieno europeo Plantago lanceolata, Leonotis saxatilis e Hypochaera radicans y de origen mediterráneo europeo Agrostis capillaris y Lysichiton caprifolius.

La flora y su importancia cuantitativa en las praderas

Solo Agrostis capillaris (Chépica) es vario presente en todos los inventarios levantados; en un número al testor (29) se presentaron Holcus lanatus (Pasto dulce) y Leonotis saxatilis (Cinabre). Estas tres especies son de origen europeo (Matthel, 1995). El diagrama de frecuencia de la Figura 3 que descubre la formación hacia las clases de mayor frecuencia, indica que la tabla de vegetación no es homogénea y que en ella hay varias comunidades involucradas (Kapp, 1984). La mayor cobertura total de todos los inventarios es presentado Anthoxanthum uraliculatum (Paja raterona) con un valor de 807%, seguido por Agrostis capillaris que llega a 730%. En este caso la primera especie, más abundante, es una gramínea nativa del tipo filosófico C3, indicando de degradación de suelo por un uso muy intenso (Naféz et al., 2002). Las especies más importantes de la cíbita fitosociológica fueron entonces: Agrostis capillaris, Anthoxanthum uraliculatum, Holcus lanatus, Leonotis saxatilis y Vulpia bromoides.

Figura 3. Histograma de frecuencia de las especies en los censos.

Figure 3. Frequency histogram of the species in the relevé.
Cuadro 6. Características edáficas de las distintas asociaciones praderas.

<table>
<thead>
<tr>
<th>Asociación</th>
<th>Junquillo</th>
<th>Cardoncillo</th>
<th>Junquillo</th>
<th>Chépica</th>
<th>Paja</th>
<th>Cepillta</th>
</tr>
</thead>
<tbody>
<tr>
<td>PH (1:2.5) agua</td>
<td>5.4</td>
<td>4.7</td>
<td>5.4</td>
<td>5.5</td>
<td>5.7</td>
<td>5.2</td>
</tr>
<tr>
<td>PH (1:2.5) CalCl2-0.01M</td>
<td>4.5</td>
<td>4.3</td>
<td>4.6</td>
<td>4.0</td>
<td>4.9</td>
<td>4.5</td>
</tr>
<tr>
<td>Materia orgánica (%)</td>
<td>9.9</td>
<td>13.5</td>
<td>9.4</td>
<td>22.7</td>
<td>25.7</td>
<td>24.7</td>
</tr>
<tr>
<td>N mineral (en NNO3)</td>
<td>15.5</td>
<td>16.8</td>
<td>14</td>
<td>18.2</td>
<td>18.2</td>
<td>12.6</td>
</tr>
<tr>
<td>P aprovechable (ppm)</td>
<td>3</td>
<td>7.3</td>
<td>7.8</td>
<td>2.9</td>
<td>3.4</td>
<td>3.8</td>
</tr>
<tr>
<td>K int. (ppm)</td>
<td>156</td>
<td>540</td>
<td>113</td>
<td>121</td>
<td>152</td>
<td>399</td>
</tr>
<tr>
<td>Na int. (mg/100 g)</td>
<td>0.13</td>
<td>0.52</td>
<td>0.39</td>
<td>0.37</td>
<td>0.34</td>
<td>0.2</td>
</tr>
<tr>
<td>Co int. (mg/100 g)</td>
<td>1.9</td>
<td>5.5</td>
<td>1.99</td>
<td>2.21</td>
<td>3.53</td>
<td>1.41</td>
</tr>
<tr>
<td>Mg int. (mg/100 g)</td>
<td>1.1</td>
<td>5.2</td>
<td>2.5</td>
<td>1.9</td>
<td>2.6</td>
<td>0.94</td>
</tr>
<tr>
<td>Ca bases int. (mg/100g)</td>
<td>5.57</td>
<td>12.6</td>
<td>5.17</td>
<td>4.79</td>
<td>6.66</td>
<td>2.83</td>
</tr>
<tr>
<td>Al int. (mg/100g)</td>
<td>0.19</td>
<td>0.41</td>
<td>0.74</td>
<td>0.44</td>
<td>0.31</td>
<td>1.3</td>
</tr>
<tr>
<td>Saturación de Al(%)</td>
<td>5.1</td>
<td>3.2</td>
<td>12.5</td>
<td>8.4</td>
<td>4.5</td>
<td>31.5</td>
</tr>
</tbody>
</table>

*Int.: intercambiable

Los valores más altos en las praderas de Paja ratazona y de Cardoncillo, la primera corresponde a un suelo que ha sido labrado y la segunda es más bien una degradación existente del mantillo de Patagua mojada. Esta última pradera presenta también mayor cantidad de materia orgánica y de nitrógeno mineral. El menor contenido en materia orgánica se presenta en la pradera de Junquillo duro y en Junquillo amarillo, ambas compuestas por el pasto del tiemzo. El contenido de minerales no muestra grandes diferencias entre las praderas, con excepción de la de Cardoncillo, que muestra valores altos y que, al parecer, es la menos degradada. La situación de aluminio es mayor en la pradera de Cepillta, que corresponde a la de mayor xeroestepa. En todo caso, como lo demostraron Rámirez et al. (1984), los mayores cambios provocados por la degradación prasense se producen a nivel de la profundidad del suelo.

Análisis multivariante.

El dendrograma de la Figura 4 muestra que los clados de praderas se agruparon bastante bien formando conglomerados aislados, coincidentes con las asociaciones determinadas en base a especies diferenciadas. La única excepción la constituye la pradera de Chépica-Cadillo (Acetos-Agrionetum capillarii) que se separa en tres conglomerados (Grupos B), transformándose así en la comunidad menos consistente. Esto demuestra que se trata de la pradera original de los suelos más secos y que los otros conglomerados constituyen etapas de degradación de la misma. Esta situación se repite en las praderas litorales de la IX Región de Chiloé, como lo demostraron Rámirez et al. (1992) y Amaro y Jiménez de Azaolan (1995) en Europa. Estas diferentes etapas correspondería a los distintos conglomerados.

La relación entre la pradera de Junquillo (Juncetum procerae) y la de Paja ratazona (Ceneta-Acetosetum annulatum) (Grupos E y F) insinúa que la última es sólo una degradación de la primera. La pradera de Cardoncillo (Grupo G), como en de esperarse, aparece como la más aislada. El único invasorio que forma el grupo A es una pradera abandonada que está siendo invadida por Zanahoria (Rubus conicus). En todo caso se demuestra que la ordenación hecha en la tabla fitosociológica es bastante consistente.

La Figura 5 muestra la segregación de las especies praleses producida por los dos primeros componentes principales. La mayoría de las especies praleses se ubican en la intersección de los ejes, sin mayor diferenciación. No obstante hay 10 especies que se agruparon tanto en el eje como en el
Cuadro 6. Características edáficas de las distintas asociaciones prusenses.

<table>
<thead>
<tr>
<th>Asociación</th>
<th>Junquillo</th>
<th>Cardoncillo</th>
<th>Junquillo</th>
<th>Chépica</th>
<th>Cadillo</th>
<th>Paja ratonera</th>
<th>Cepillía</th>
</tr>
</thead>
<tbody>
<tr>
<td>pH (1:2.5:5 agua)</td>
<td>5.4</td>
<td>5.6</td>
<td>5.4</td>
<td>5.5</td>
<td>5.7</td>
<td>5.2</td>
<td></td>
</tr>
<tr>
<td>pH (1:2.5:5 CaCl2 0.01 M)</td>
<td>4.7</td>
<td>4.9</td>
<td>4.6</td>
<td>4.8</td>
<td>4.9</td>
<td>4.5</td>
<td></td>
</tr>
<tr>
<td>Materia orgánica (%)</td>
<td>9.9</td>
<td>13.5</td>
<td>9.7</td>
<td>22.7</td>
<td>25.7</td>
<td>24.7</td>
<td></td>
</tr>
<tr>
<td>N nitrato (PPS NNC3)</td>
<td>15.7</td>
<td>16.8</td>
<td>14</td>
<td>18.2</td>
<td>18.2</td>
<td>12.6</td>
<td></td>
</tr>
<tr>
<td>D: aprovechable (ppm)</td>
<td>3</td>
<td>7.3</td>
<td>3.8</td>
<td>2.9</td>
<td>3.4</td>
<td>3.8</td>
<td></td>
</tr>
<tr>
<td>K iv. (ppm) *</td>
<td>156</td>
<td>340</td>
<td>113</td>
<td>121</td>
<td>152</td>
<td>109</td>
<td></td>
</tr>
<tr>
<td>No int. (mg/kg/100 g)</td>
<td>0.13</td>
<td>0.52</td>
<td>0.39</td>
<td>0.37</td>
<td>0.34</td>
<td>0.2</td>
<td></td>
</tr>
<tr>
<td>Ca int. (mg/kg/100 g)</td>
<td>1.9</td>
<td>5.5</td>
<td>1.99</td>
<td>2.21</td>
<td>3.53</td>
<td>1.41</td>
<td></td>
</tr>
<tr>
<td>Mg int. (mg/kg/100 g)</td>
<td>1.1</td>
<td>5.2</td>
<td>2.5</td>
<td>2.9</td>
<td>2.4</td>
<td>0.94</td>
<td></td>
</tr>
<tr>
<td>Ca h: int. (mg/kg/100 g)</td>
<td>3.35</td>
<td>12.6</td>
<td>5.17</td>
<td>4.79</td>
<td>5.86</td>
<td>2.83</td>
<td></td>
</tr>
<tr>
<td>Al int. (mol/kg/100 g)</td>
<td>0.19</td>
<td>0.41</td>
<td>0.74</td>
<td>0.44</td>
<td>0.31</td>
<td>1.3</td>
<td></td>
</tr>
<tr>
<td>N: saturación de Al (%)</td>
<td>5.1</td>
<td>3.2</td>
<td>12.5</td>
<td>8.4</td>
<td>4.3</td>
<td>3.5</td>
<td></td>
</tr>
</tbody>
</table>

* Int. intercambiable

valores más altos en las praderas de Paja ratonera y de Cardoncillo, la primera corresponde a un suelo que ha sido labrado y la segunda es más bien una degradación reciente del bioturb. Patagias marina. Esta última pradera preserva también mayor cantidad de materia orgánica y de nitrógeno mineral. El menor contenido en materia orgánica se presenta en la pradera de Junquillo duró y de Junquillo ambas compactadas por el pieotoo del ganado. El contenido en nutrientes no muestra grandes diferencias entre las praderas, con excepción de la de Cardoncillo, que muestra valores altos y que, al parecer, es la menos degradada. La saturación de aluminio es mayor en la pradera de Cepillía, que corresponde a la de mayor xenofitosismo. En todos los casos, por lo demostrado Ramírez et al. (1984) los mayores cambios provocados por la degradación prusense se producen a nivel de la disponibilidad del suelo.

Análisis multivariante
El dendrograma de la Figura 4 muestra que todos los ensayos de prueba se agruparon bastante bien formando conglomerados aislados, coincidiendo con las asociaciones determinadas en base a especies diferenciales. La única excepción la constituye la pradera de Chépica-Cadillo (Acacia-Adhatod Авacum cappillae) que se separa en tres conglomerados (Grupos B), transformándose así en la comunidad menos consistente. Esto demuestra que se trata de la pradera original de los suelos más secos y que otros conglomerados constituyen etapas de degradación de la misma. Esta situación se repite en las praderas nativas de la IX Región de Chile, como lo demuestran Ramírez et al. (1992a) y Ruiz y Jiménez de Ascanio (1995) en Europa. Estos diferentes capas corresponden a los distintos conglomerados. La unión entre la pradera de Junquillo (bunecom ceras) y la de Paja ratonera (Centella-Lythrum arcticum) (Grupos E y F) insinúa que la última es sólo una degradación de la primera. La pradera de Cardoncillo (Grupo C), como era de esperarse, aparece como la más aislada. El único inventario que forma el Grupo A es una pradera abandonada que está siendo invadida por Zannichelia (Rahbar constructa). En este caso se demuestra que la ordenación lechera en la tabla fitosociológica es bastante consistente. La Figura 5 muestra la segregación de las especies prusenses producida por los dos primeros componentes principales. La mayoría de las especies prusenses se ubica en la intersección de los ejes, sin mayor diferenciación. No obstante, hay 10 especies que se segregaron tanto en el primero como en el
segundo eje. En el primer eje se separan las especies de lugares más fríos, como son *Fringilla pascerum*, *Juncus recurvus* y *Juncus bidens* de aquellas de ambiente más cálido, como son *Agrostis capillaris* y *Anthoxanthum odoratum* (Pasto olerosa). Esta distribución señala que el primer eje se puede interpretar a un gradiente de temperatura, pudiendo también significar un mayor distanciamiento del bosque original. El segundo eje vertical hacia arriba separa especies de lugares secos hacia arriba de aquellas de lugares húmedos, los cuales se ubican en la parte inferior, confirmando que este segundo eje equivale a un gradiente de humedad edáfica. También se aprecia que la diferenciación correspondiente a este segundo eje es mayor que a que aparece en el primero.

De acuerdo con esta ordenación de las especies, los cuadrantes superiores de la Figura 3 serían secos y los inferiores húmedos, mientras que los de la izquierda serían fríos y los de la derecha cálidos.

Al distribuir los inventarios en el plano formado por estos dos primeros componentes principales se confirma el significativo ecotópico dado a los eje (Figura 6). Los inventarios de la pradera de Paja raquetera (*Centaurea*-*Anthoxanthum aviculare*) que se instala generalmente después de un laboreo prolongado con agravación del suelo, se separan en el extremo de mayor humedad y temperatura (Grupo F). La pradera de Chápite-Cadillo (*Achillea-Agrostieum capillaris*) se ubica en el extremo superior del eje vertical (Grupo G) junto
Figura 5. Distribución de las especies en el plano formado por los dos primeros componentes principales, según temperatura y humedad.

Figura 6. Distribución de los censo en el plano formado por los dos primeros componentes principales.

Figura 7. Distribución del relevé en el plano formado por los dos primeros componentes principales.
con los inventarios correspondientes a la comunidad de pastores resultantes de la degradación antropogénica (Grupos B y D). El inventario 25 que forma el grupo A se ubica junto a los cursos de agua propia de paja, dado que corresponde a una invasión de esta por Varrzamor. Los grupos E y G gozaron poco de condiciones más húmedas parecidas a las que ocupaban las comunidades leñosas originales. A observar la distribución de todos los inventarios es claro que no se ubican en condiciones de riego, lo que se corresponde con el equilibrio climático de las cercanías del océano.

**Dinámica de la vegetación antropogénica**

Teniendo en cuenta las clasificaciones y ordenaciones multifacéticas anteriores, se proponen las siguientes razones de degradación de la vegetación (Figura 7): taladrar el material de Patagua marina (Oxytropsis-Eichhornietum arenosi) se forma una pradera de Cardojoello (Acorhiza-Astrocytum littoralis). Al taladrar el bosque pantanoso de Temo-Pura (Sphaerophyso-Brotia-Myrcia-Littoreum) y someterlo a pastoreo se forma una pradera húmeda de Junquillo (Juncetum proceri). Al taladrar el bosque de Olivillo (Lapageria-Armo(trichionetum punctatae) y agapeta pastoreo de vacunos, se forma una pradera de Chépica-Cadillo (Acorhiza-Astrocytum capillaris). Esta pradera degradada por el pastoreo de ovejas se transforma en la pradera de Cipolla (Triphila-chus-diospyros-diospermum), pero en lugares más húmedos y con mayor pastoreo de vacuno se puede degradar a una pradera de Junquillo más húmedo (Juncetum-Agrostietum capillaris). Modifiquemos el taladrado y la siembra de papas (Solanum tuberosum) principalmente, la pradera de Chépica-cadillo (Acorhiza-Astrocytum capillaris) se puede degradar a una pradera de Paja Rayonera (Corntello-Archoxylietum articulatis).

**CONCLUSIONES**

De los resultados presentados y discutidos en el capítulo anterior se pueden extraer las siguientes conclusiones:
La vegetación boscosa original del litoral valdiviano ha sido reemplazada en grandes extensiones por praderas agronómicas. En dichas praderas, autótopas sobreviven y encuentran sedición una gran cantidad de especies herbáceas nativas.

En el exécreto biológico dominan herbáceas perennes y anuales indicadores de intervención humana las primeras, y de segunda etapa, las segundas.

Con excepción de Anthoxanthum ursicum, las principales especies dominantes en la vegetación praterana secundaria son introducidas.

Según la composición florística, se reconocieron cinco asociaciones prateranas ya descritas con anterioridad (Agrostis-Agrostietum capillaris, Festuca-Vulpiaetum bromisidis, Junco-Agrostietum capillaris, Juncetum proceri y Centello-Anthoxanthetum uruculati), y se propone una sexta de manera provisional: Eryngietum paniculati.

Se presentaron diferencias en las propiedades físico-químicas de los suelos que corresponden a los estadios de degradación de las praderas.

El análisis de conglomerado confirmó la ordenación fitosociológica de los suelos en la tabla final.

La ordenación multivariada por componentes principales segregó especies e inventarios según gradientes ambientales de temperatura y humedad.

Se establecen rutas para la degradación autóctona de la vegetación lechosa original de acuerdo al tipo de tala, y de la vegetación praterana secundaria, de acuerdo con el manejo agropecuario.

AGRADECIMIENTOS

Los autores agradecen el apoyo económico de la Dirección de Investigación y Desarrollo de la Universidad Austral de Chile, por la financiación del Proyecto DDF-UACH S-200025.

BIBLIOGRAFÍA


